NAG Toolbox for MATLAB

s18ac

1 Purpose

s18ac returns the value of the modified Bessel Function $K_0(x)$, via the function name.

2 Syntax

[result, ifail] = s18ac(x)

3 Description

s18ac evaluates an approximation to the modified Bessel Function of the second kind $K_0(x)$.

Note: $K_0(x)$ is undefined for $x \le 0$ and the function will fail for such arguments.

The function is based on five Chebyshev expansions:

For $0 < x \le 1$,

$$K_0(x) = -\ln x \sum_{r=0}^{r} a_r T_r(t) + \sum_{r=0}^{r} b_r T_r(t),$$
 where $t = 2x^2 - 1$.

For $1 < x \le 2$,

$$K_0(x) = e^{-x} \sum_{r=0}^{7} c_r T_r(t)$$
, where $t = 2x - 3$.

For $2 < x \le 4$,

$$K_0(x) = e^{-x} \sum_{r=0}^{r} d_r T_r(t),$$
 where $t = x - 3$.

For x > 4.

$$K_0(x) = \frac{e^{-x}}{\sqrt{x}} \sum_{r=0}^{7} e_r T_r(t)$$
, where $t = \frac{9-x}{1+x}$.

For x near zero, $K_0(x) \simeq -\gamma - \ln\left(\frac{x}{2}\right)$, where γ denotes Euler's constant. This approximation is used when x is sufficiently small for the result to be correct to **machine precision**.

For large x, where there is a danger of underflow due to the smallness of K_0 , the result is set exactly to zero.

4 References

Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions (3rd Edition) Dover Publications

5 Parameters

5.1 Compulsory Input Parameters

1: x - double scalar

The argument x of the function.

Constraint: $\mathbf{x} > 0.0$.

[NP3663/21] s18ac.1

s18ac NAG Toolbox Manual

5.2 Optional Input Parameters

None.

5.3 Input Parameters Omitted from the MATLAB Interface

None.

5.4 Output Parameters

1: result – double scalar

The result of the function.

2: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

 $\mathbf{x} \leq 0.0$, K_0 is undefined. On soft failure the function returns zero.

7 Accuracy

Let δ and ϵ be the relative errors in the argument and result respectively.

If δ is somewhat larger than the *machine precision* (i.e., if δ is due to data errors etc.), then ϵ and δ are approximately related by:

$$\epsilon \simeq \left| \frac{x K_1(x)}{K_0(x)} \right| \delta.$$

Figure 1 shows the behaviour of the error amplification factor

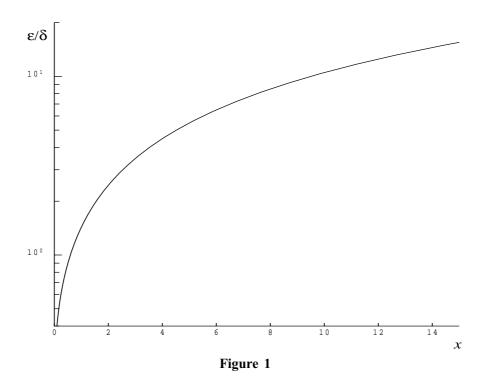
$$\left| \frac{xK_1(x)}{K_0(x)} \right|$$
.

However, if δ is of the same order as *machine precision*, then rounding errors could make ϵ slightly larger than the above relation predicts.

For small x, the amplification factor is approximately $\left| \frac{1}{\ln x} \right|$, which implies strong attenuation of the error, but in general ϵ can never be less than the *machine precision*.

For large x, $\epsilon \simeq x\delta$ and we have strong amplification of the relative error. Eventually K_0 , which is asymptotically given by $\frac{e^{-x}}{\sqrt{x}}$ becomes so small that it cannot be calculated without underflow and hence the function will return zero. Note that for large x the errors will be dominated by those of the standard function EXP.

s18ac.2 [NP3663/21]



8 Further Comments

None.

9 Example

```
x = 0.4;
[result, ifail] = s18ac(x)

result =
    1.1145
ifail =
    0
```

[NP3663/21] s18ac.3 (last)